Enhancing the Monitoring of Global Precipitation with the Second Generation CMORPH Integrated Satellite Estimates

Pingping Xie, Robert Joyce, Shaorong Wu NOAA Climate Prediction Center

NOAA's 43rd Climate Diagnostics and Prediction Workshop 2018.10.25.

Objectives

 To report the development of the second generation CMORPH integrated satellite poleto-pole global precipitation estimates; and

 To get feedbacks from our colleagues and potential users on users requirements et al;

The First Generation CMORPH

1) Basic Notion & Flowchart

CPC Morphing Technique

Joyce et al. (2004), Joyce and Xie (2011), Xie and Joyce (2015), Xie et al. (2017)

Basic Notion

to construct a high-quality, high resolution precipitation analysis over the globe through integrating information from satellite observations and in situ measurements

Key Elements

- Satellite retrievals of instantaneous precip. rates from multi sensors
- Cloud motion vectors to propagate the fields of instantaneous rates
- In situ / long-term data to perform bias correction

The First Generation CMORPH

2) Products

Purely Satellite Based Products

- 8kmx8km resolution from 60°S-60°N
- 30-min interval from 1998 to the present updated at a latency of 2 hours

Gauge-CMORPH Blended Precipitation

- 0.25°lat/lon grid over the global land
- Daily precipitation from 1998, updated at a latency of one day

Associated Climatology

- Daily Precipitation climatology defined on
 0.25°lat/lon with the 20-year data (1998-2017)
 - Mean precipitation, 99-, 95, 90percentiles, frequency of raining days
 - (right) Gauge-CMORPH blended daily precipitation extreme climatology for July

The First Generation CMORPH

3) Shortcomings

- Incomplete Global Coverage
 - 60°S-60°N
 - Restricted by the use of GEO IR to derive motion vectors
- Compromised Representation of Cold Season Precipitation and Orographic Rainfall
 - Restricted by poor performance of PMW retrievals

1) Features

- Goal
 - 0.05° lat/lon over the entire globe (90°S-90°N)
 - 30-min interval updated at a latency ~ one hour
 - (eventually) back extended to 1991

Basic Notion

to construct a high-quality, high-resolution precipitation analysis over the globe through integrating information from satellite observations as well as in situ measurements and model simulations

Approach

- Integrating information from LEO/GEO to define raw CMORPH
- Removing bias through calibration against ground observations and long-term low-res merged analysis

2) Inputs / Algorithms Upgrades

- Improved input satellite retrievals of rainfall and snowfall from NASA and NESDIS/STAR
- Satellite IR based precipitation estimates developed / refined at NOAA/CPC
- Greatly refined integration algorithm at NOAA/CPC
 - Inter-satellite calibration algorithm
 - Precipitation motion vectors
 - Kalman Filter analysis framework
- Newly added technique to determine fraction of solid precipitation from surface meteorology (T_{2m} et al) through collaboration with FSU
 - Global hourly T_{2m} analysis

3) Sample APCOMB, Motion Vectors, & CMORPH2

12:00Z, 10 May 2018

4) North Pole Animation

CMORPH2 Precip Rate @ 2018.04.23 02:00Z (mm/hr)

5 10 15 20 25 30 40 50 75 100 150

5) Comparison with GFS 6-12 Hour Forecasts

5 10 15 20 25 30 40 50 75 100 150 250

6) Alaska Snow Storm of Feb., 2018

Scatter plots between 3-day accumulated precipitation from the RAW CMORPH2 and the CPC gauge based analysis on 0.25°lat/lon grid boxes over Alaska

7) Winter Storm Grayson 3-5 January 2018

- Accumulated precipitation (rainfall, snowfall, mixed) from the Stage IV radar observations (middle), the currently operational CMORPH (left) and the second generation CMORPH (CMORPH2, right);
- The operational version CMORPH missed / under-estimated snowfall over most of the regions covered with surface snow;
- CMORPH2 is capable of capturing snowfall along the path of Grayson over the east coast.

8) Comparison against CPC Gauge Analysis

- Comparison to CPC gauge analysis of daily precipitation on 0.25°lat/lon for JAS of 2018
- 2nd generation CMORPH compares well to CPC daily gauge analyses relative to both operational CMORPH and GFS precipitation for all latitudes

9) Comparison against RMRS Radar Precipitation

- Comparison between CMORPH and MRMS radar daily precipitation on 0.25°lat/lon grid boxes over land east of 110°W (top) and over ocean 20-150Km off the coasts (bottom) for JAS of 2018.
- Significantly improved performance for the second generation CMORPH upon its predecessor (CMORPH).

Summary and Future Plan

What we have done

- Put the CMORPH2 processing system into the (parallel run) real-time production at a CPC work station
- The second generation CMORPH:
 - •Covering the entire globe from pole to pole on a fine resolution of 0.05°lat/lon
 - •in a 30-min interval and updated on a real-time basis
 - •With much improved representation of snowfall and cold season precipitation

What are on the way (FY19)

- Comprehensive examinations for May 2017 to the present
- Reducing the latency to one hour
- Pushing the CMORPH2 into NWS/AWIPS II
- Fine-tuning and finalizing the system
- Interactions with users

In the upcoming 2-3 years

- Reprocessing CMORPH2 for 1991 to present
- Generating associated product (gauge-CMORPH blended) for the same period
- Constructing precipitation climatology for 1991 2020
- Regional enhancements to CMORPH
- Sample Real-Time CMORPH2 (Globe)
- Sample Real-Time CMORPH2 (Antarctica)
- Sample Real-Time CMORPH2 (Arctic)